Genetic Algorithm Based Approach for Finding Faulty Modules in Open Source Software Systems
نویسندگان
چکیده
Computer program produces an incorrect or unexpected result or behaves in haphazard way then there is an error in that computer program. In order to improve the software quality, prediction of faulty modules is necessary. Various Metric suites and techniques are available to predict the modules which are critical and likely to be fault prone. Genetic Algorithm is a problem solving algorithm. It uses genetics as its model of problem solving. It’s a search technique to find approximate solutions to optimization and search problems.Genetic algorithm is applied for solving the problem of faulty module prediction and as well as for finding the most important attribute for fault occurrence. In order to perform the analysis, performance validation of the Genetic Algorithm using open source software jEdit is done. The results are measured in terms Accuracy and Error in predicting by calculating probability of detection and probability of false Alarms
منابع مشابه
Evaluation of Fault Proneness of Modules in Open Source Software Systems Using k-NN Clustering
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the p...
متن کاملA K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems
Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Obj...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملComparative Analysis of Random Forests with Statistical and Machine Learning Methods in Predicting Fault-Prone Classes
There are available metrics for predicting fault prone classes, which may help software organizations for planning and performing testing activities. This may be possible due to proper allocation of resources on fault prone parts of the design and code of the software. Hence, importance and usefulness of such metrics is understandable, but empirical validation of these metrics is always a great...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014